

July 16, 2013

- To: dgorski@trer.com ; bluemtn@sbcglobal.net
- Cc: <u>deepak@rdiminerals.com;</u> <u>ebentzen@Lyntek.com</u>

From: tom@rdiminerals.com

SUBJECT: RESULTS OF SCOPING BUCKET STATIC LEACH TEST

Dear Dan,

This memorandum is a summary of the scoping level investigations into the potential for heap leaching the Texas Rare Earth ore. Two separate series of tests were conducted on the Red Ryolite sample. Specifically, the first series was conducted on various crush sizes from plus two inch to minus one quarter inch at a 10 gram per liter (gpl) sulfuric acid strength. The second series was conducted on nominal one half inch crushed material to evaluate the extraction characteristics using various acid strengths between 5 and 100 g/l sulfuric acid.

The sample designated "Red Ryolite" was crushed in the RDi large jaw crusher and then screened into different size fractions for the "Static Leach Tests" (SLT). The screen analysis is included in Table 1.

Table 1. Screen Analysis of t	Table 1. Screen Analysis of the Crushed Red Ryolite Sample								
Size Fraction Inches	Weight, %								
+ 2 inch	10.3								
2 X 1 inch	70.4								
1 X 1/2 inch	10.8								
1/2 X 1/4 inch	4.0								
- ¼ inch	4.5								

A head analysis was run on the whole material. Selected assays are shown in Table 2. Calculated heads are included in Appendix A.

	Table 2. Selec	ted Head Assays	
Element	Level	Assay	⁽¹⁾ Calculated
Y	ppm	210	193
Dy	ppm	28	29
U	ppm	35.3	35.8
Be	ppm	19	
Ce	ppm	71	
Nd	ppm	29.1	
Th	ppm	182	
Hf	ppm	78.6	
Zn	ppm	580	
MnO	%	0.065	

Note: ⁽¹⁾ Based on Bucket Leach Tests SL-1 to SL-5.

The first series was conducted at about 50% solids for 63 days on the various size fractions. The test data are given in Appendices B and the results are summarized in Tables 3 and 4. The test results indicate the following:

- 1. Comparison of the calculated heads and the assayed heads for the elements of interest are similar. Hence, it is reasonable to conclude that the minerals are fairly uniformly distributed in the deposit.
- 2. Extractions for Yttrium varied from 20.8 to 61.1% for the different sizes with a combined extraction of 48.6%. Extractions for Dysprosium varied from 23.8% to 57.7% with a combined extraction of 44.5%.
- 3. The highest extractions for all minerals of interest were in the ½ in X ¼ in size fractions. The extractions dropped significantly in the minus ¼ in size fraction.
- 4. The acid consumption was reasonable for the coarse size fractions (>1/2 inch) and more than doubled for the minus 1/4 inch material.

	Table 3.	Assays	of the I	Different	Size F	ractions of	of the C)re	
Fraction	Weight,	Yttri	um	Dyspro	osium	Urani	um	TREE	E +Y
Fraction	%	Assay	Calc.	Assay	Calc.	Assay	Calc.	Assay	Calc.
Combined	100.0	210	193	28	29	35.3	35.8	499	495
+ 2"	10.3		196		28.1		35.4		482
1" X 2"	70.4		191		29.2		35.9		499
¹∕₂" X 1"	10.8		198		29.1		36.3		489
1/4" X 1/2"	4.0		189		27.9		35.7		470
-1/4"	4.5		198		28.7		33.6		500

	Та	able 4. Sur	mmary of Extra	actions of S	Selected El	ements		
	Weight,			Extraction	, %			Acid
Size Fraction	weight, %	Yttrium (Y)	Dysprosium (Dy)	Uranium (U)	Thorium (Th)	TREE +Y	HREE + Y	Consumption Kg/mt
Combined	100.0	48.6	44.5	12.5	40.8	42.5	44.0	15.2
+ 2"	10.3	32.3	27.5	7.7	22.4	28.0	29.0	13.2
1" X 2"	70.4	50.3	45.6	11.3	39.5	43.1	45.4	12.8
1⁄2" X 1"	10.8	61.1	57.3	18.5	56.7	54.4	55.5	18.4
1⁄4" X 1⁄2"	4.0	57.6	57.7	22.0	65.5	53.6	52.9	23.8
-1/4"	4.5	20.8	23.8	19.3	43.7	27.4	20.9	41.9

Based on these results, it is reasonable to conclude that heap leach could be run at nominal 1 inch crush size.

The second series was comprised of bucket static leach tests conducted at various acid strengths on nominal ½ inch crushed Red Ryolite ore. The test data are presented in Appendix C and the results are summarized in Tables 5 to 7. The test results indicate the following:

- 1. The higher acid strengths resulted in higher extractions for the metals of interest. Yttrium and dysprosium extractions varied from 24.6% and 21.4% to 84.0% and 79.4%, respectively. Total rare earth elements plus yttrium (TREE+Y) and heavy rare earth elements plus yttrium (HREE+Y) extractions varied from 24.8% and 27.3% to 73.4% and 79.9%, respectively.
- 2. The higher the initial acid concentration in solution, the higher the acid consumption in the tests.
- 3. Acid consumption generally drops off after 18 days of leaching thereby indicating that acid consumers in the ore were extracted as shown in Table 2.
- 4. Aluminum and iron levels in the 25/26 day solutions varied from 0.955 g/l to 3.52 g/l for aluminum and 0.069 g/l to 1.85 g/l for iron as shown in Table 3. A very distinct break occurred for iron between 10 g/l and 30 g/l acid strength. The aluminum appeared to be consistently increasing with acid concentration.

	Table	5. Sun	nmary	of Bu	cket Static	Leach Tes	sts
Test No.	Acid Strength			Extra	ction, %		Acid Consumption
NO.	g/l	Y	Dy	U	TREE+Y	HREE+Y	Kg/mt
SL-10	5	24.6	21.4	4.8	24.8	27.3	9.2
SL-6	10	47.4	42.8	13.3	43.3	47.5	13.1
SL-7	30	70.5	64.9	21.2	62.2	68.4	19.4
SL-8	50	77.4	74.8	28.4	67.4	74.1	21.6
SL-9	100	84.0	79.4	30.7	73.4	79.9	29.6

-	Table 6. Relationship	of Acid St	rength vs. Ac	id Consumption	on			
Test No.	Acid Strength g/l		Residual Level, g/l					
Test NO.	Acid Strength gh	Day 4	Day 11/12	Day 18/19	Day 25/26			
10	5	2.50	3.76	3.75	3.76			
6	10	6.25	7.50	7.50	8.75			
7	30	25.0	26.3	28.8	28.8			
8	50	45.0	46.2	48.7	50.0			
9	100	91.2	96.2	97.5	100.0			

	Table 7. Iron a	and Aluminu	m Levels in S	olution	
Test No.	Acid Strength g/l	Extrac	tion, %	Leacha	ate, g/l
Test NO.	Acid Strength g/i	AI	Fe	AI	Fe
10	5	1.4	0.7	0.955	0.069
6	10	2.0	0.9	1.37	0.097
7	30	3.0	5.3	2.07	0.545
8	50	3.8	9.5	2.65	0.966
9	100	5.2	18.7	3.52	1.85

The next phase of the program consisting of preliminary column leach tests on crushed rock at two different sulfuric acid strengths was initiated. The preliminary assay results indicate the technical viability of the heap leach process appears to be positive.

Please contact me or Deepak Malhotra if you have any questions or comments on this report.

Sincerely Yours,

Tom Randall Senior Project Manager Resource Development Inc. 11475 W. I-70 Frontage Rd. North Wheat Ridge, CO 80033 Phone: 303-422-1176 Website: www.rdiminerals.com

Cc: Deepak Malhotra

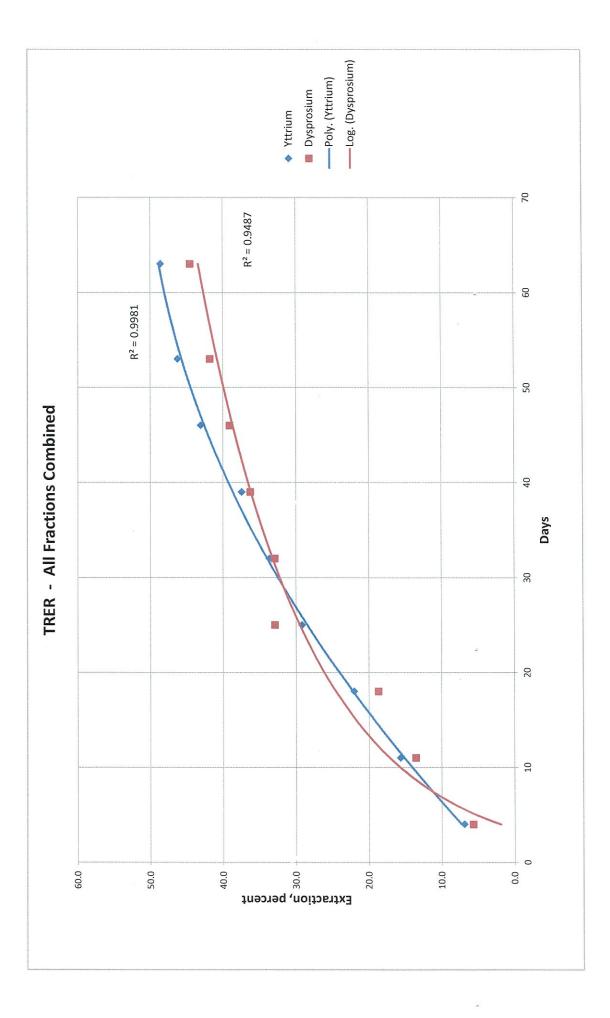
APPENDIX A SUMMARY OF CALCULATED HEADS

Appendix A	Resource Development Inc	TRER Static Leach Tests	June 24, 2013
Appe	Reso	TREF	June

Comparison of Assayed and Calculated Heads

	HREE+Y	259	349	352	348	351	331	360
	LREE	140	148	130	152	138	138	149
	TREE+Y	499	495	482	499	489	470	500
	Be	19	19.3	20.1	19.1	19.2	20.3	19.4
	Li ·	40	48.3	47.7	46.5	51.6	56.6	62.6
bpm	۲b	51.4	54.8	55.5	55.0	54.3	52.9	53.3
	Nd	29.1	29.5	 27.2	30.5	26.6	28.1	26.4
	Th.	182	191	179	193	190	191	181
	n	35.3	35.8	35.4	35.9	36.3	35.7	33.6
	Dy	28	29.0	28.1	29.2	29.1	27.9	28.7
	Y	210	193	196	191	198	189	198
Wt	%		100.0	10.3	70.4	10.8	4.0	4.5
Wt	ß	42,889		4,400	30,200	4,629	1,735	1,925
	Head	Assay	Calc	+2 "	1" X 2"	1/2" X 1"	$1/4" \times 1/2"$	-1/4"

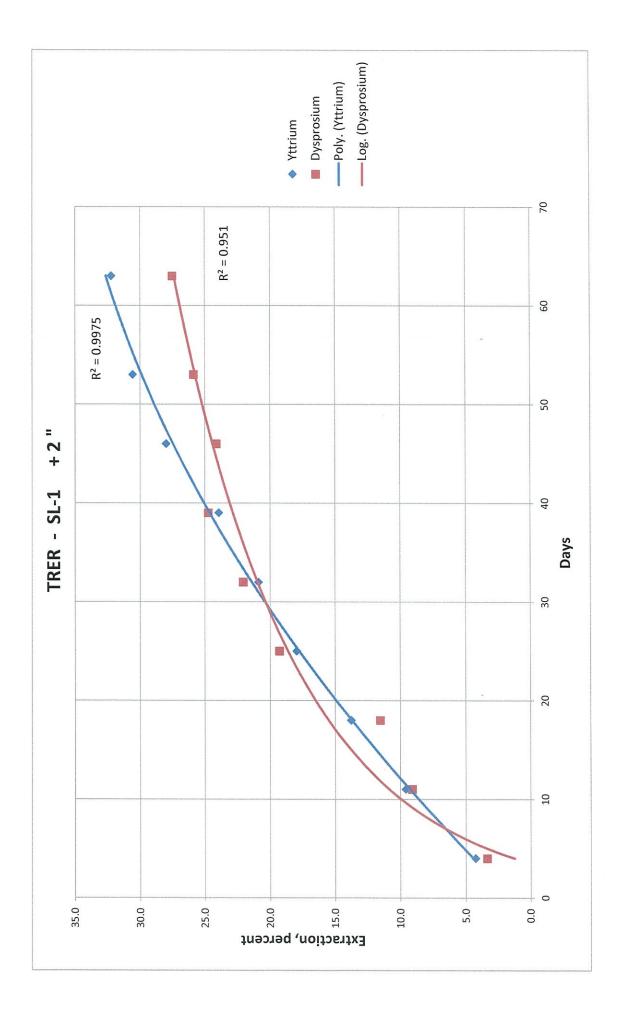
APPENDIX B SUMMARY OF LEACH TEST DATA


Summary of Extractions vs. Time for Yttrium and Dysprosium

	Weight					Perce	Percent Extraction Yttrium	ttrium			
Fraction	. %	Day	4	. 11	18	25	32	39	46	53	63
Combined	100.0		6.9	15.7	22.0	2.9.2	33.6	37.4	43.0	46.2	48.6
+2	10.3		4.3	9.6	13.8	18	20.9	23.9	28	30.6	32.2
1" X 2"	20		6.6	15.2	21.8	29.7	. 34.5	38.8	44.6	48.3	50.3
1/2" X 1"	10.8		12.1	24.9	6 ZE	40.1	45.3	47.9	53.8	56	61.1
1/4" X 1/2"	4.0		11.7	23.9	32.1	39.3	42.6	45.5	54.1	53.7	57.6
-1/4"	4.5		1.5	7.2	9.6	11.7	13,3	14.7	17.4	19.6	20.8

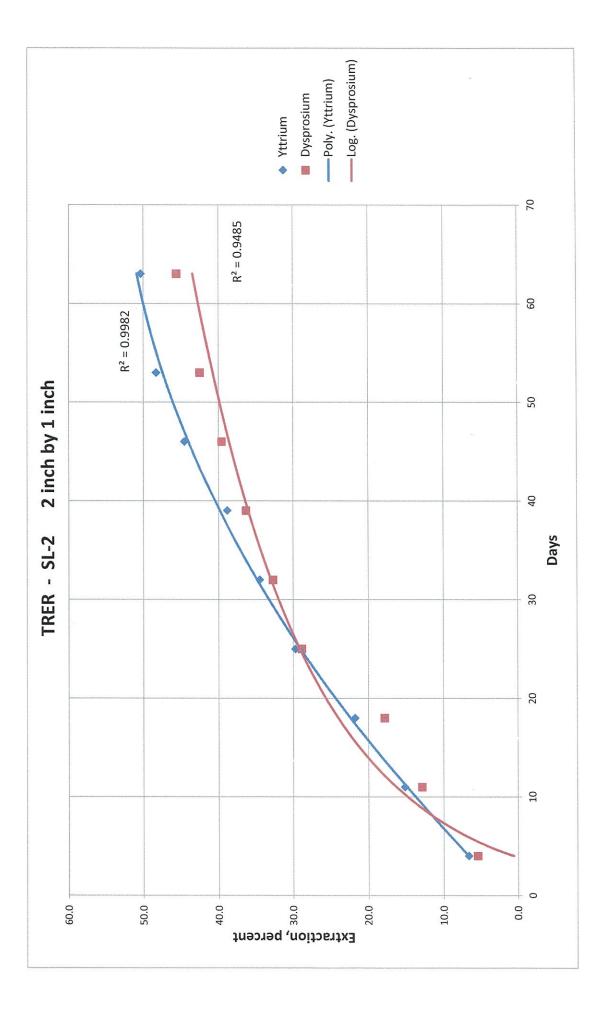
Ļ-							
	E9	44.5	27.5	45.6	57.3	57.7	23.8
	53	41.8	25.9	42.5	55.6	56.2	20.8
	. 46	39.1	24.1	39.6	52.7	54.2	18.8
orosium	39	36.2	24.7	36.3	46.3	55.3	20.4
Percent Extraction Dysprosium	32	32.9	22.1	32.7	44.0	52.1	16.8
Percent	25	29.3	19.3	28.8	5.14	47.3	14.7
	18	18.7	11.5	6.71	8.02	31.1	9.2
	11	13.5	9.1	12.9	21.5	22.7	6.3
	4	2'2	3.4	5.4	6'6	6'6	1.2
	Day						
Weight	%	100	10.3	70.4	10.8	4.0	4.5
	Fraction	Combined	+2	1"X2"	1/2" X 1"	1/4" X 1/2"	-1/4"

Summary of Extractions for Selected Elements


_					_			
Acid Consumption	kg/mt	15.2		13.2	12.8	18.4	23.8	41.9
	HREE+Y	44.0		29.0	45.4	55.5	52.9	20,9
	LREE	38.9		25.5	37.8	51.6	55.1	41.2
	TREE+Y	42.5		28.0	43.1	54.4	53.6	27.4
	Be	0.8		0.7	0.7	1.1	1.2	1.9
	Li I	16.7		15.4	14.0	22.5	29.3	36.1
Extraction, %	۲b	35.7		21.6	37.2	42.9	42.2	21.0
Ш	PN	42.2		26.2	42.3	51.1	58.4	40.1
	Th	40.8	-	22.4	39.5	56.7	65.5	43.7
	n.	12.5		7.7	11.3	18.5	22.0	19.3
	Dγ	44.5		27.5	45.6	57.3	57.7	23.8
	٢	48.6		32.3	50.3	61.1	57.6	20.8
Wt	%	100.0		10.3	70.4	10.8	4.0	4.5
Wt	8	42,889		4,400	30,200	4,629	1,735	1,925
	Fraction	Combined		+2 "	1" X 2"	1/2" X 1"	$1/4" \times 1/2"$	-1/4"

SL-1

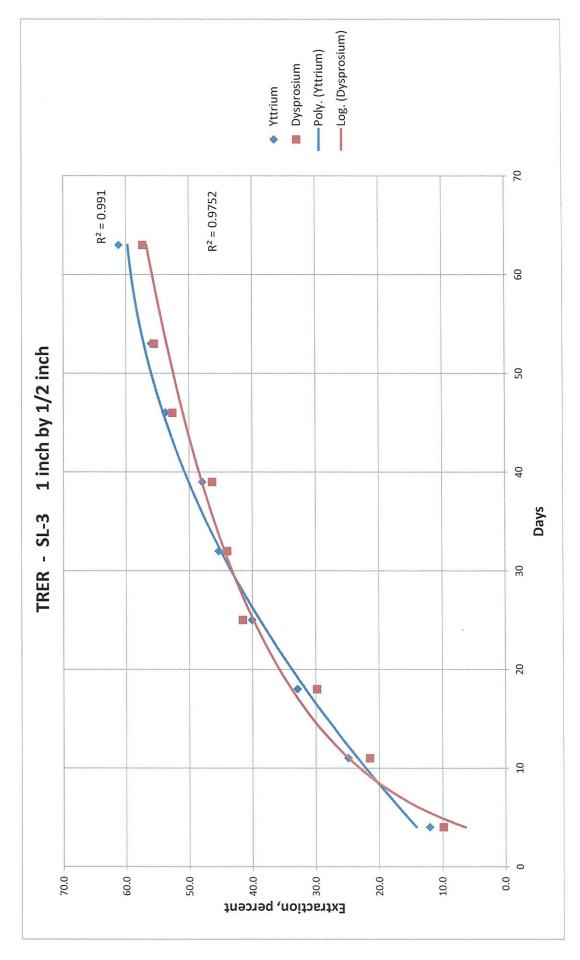
Plus 2 inch Fraction


	extr	%	c (c	7.70	27.5	7.7		16.2	0.7	22.4	26.2	23.2	28.0	25.5	29.0
Day 63	Solution	dqq	C C C C C C C C C C C C C C C C C C C	nncoc	7100	2540		7310	139	37300	6580	11900	124480	30220	94260
3	extr	%	20 6	0.00	25.9	6.2		11.9	0.6	20.4	24.0	20.9	26.1	23.6	27.1
Day 53	Solution	dqq	CC600	00000	6800	2050		5360	119	34500	6120	10900	118220	28500	89720
9t	extr	%	0.90	0.02	24.1	5.8		11.6	0.5	18.7	21.7	18.9	24.2	22.5	24.8
Day 46	Solution	ppb	62200	00020	6400	1920		5340	102	31800	5580	9910	110306	27550	82756
39	extr	%	72.0	<u>7</u> 77	24.7	7.0		9.2	0.4	16.5	20.4	18.1	21.8	20.5	22.3
Day 39	Solution	dqq	AEAAA		6690	2400		4250	85.8	28300	5310	9640	100746	25310	75436
12	extr	%	0 00	20.3	22.1	4.2		7.6	0.4	12.7	16.7	14.1	18.7	17.9	19.0
Day 32	Solution	dqq	00305	20055	6020	1440		3510	75.3	21900	4370	· 7540	86751	22180	64571
25	extr	%	10.0	7.0T	19.3	3.7		υ. Ω	0.3	12.3	16.6	13.9	17.0	17.1	17.0
Day 25	Solution	ddd	24500	2000	5340	1260		2580	63.1	21600	4420	7560	80096	21550	58546
18	extr	%	12 0	0.01	11.5	4.0		4.8	0.3	10.1	13.1	10.0	12.8	13.6	12.5
Day 18	Solution	pṗb	00230	00/07	3200	1400		2260	66.3	17900	3530	5470	60639	17350	43289
11	extr	%	9 U	D.n	9.1	2.7		3.1	0.2	6.8	9.2	6.6	9.2	10.6	8.7
Day 11	Solution	dqq	00001	NNOOT	2560	958	•	1460	44.5	12200	2490	3660	44193	13684	30509
4	extr	%	C V	0.4	3.4	1.2		1.4	0.1	3.1	5.3	2.9	4.5	6.4	3.8
Day 4	Solution	, dqq			955		_	676	24.3	5550	1470	1650	21918	8323	13595
Tails	Assay	ppm	661	CCT	20.4	32.7		40	. 20	139	20.1	42.6	347	96.6	250
	ppm	Calc	201	D L T	28.1	35.4		47.7	20.1	179	27.2	55.4	482	130	352
	Head, ppm	Assay	010		28.0	35.3		40	19	182	29.1	51.4	499	140	359
		Element	>		Δ	2		:	Be	ЧL	PN	۲b	TREE+Y	LREE	HREE+Y

2 inch by 1 inch

SL-2

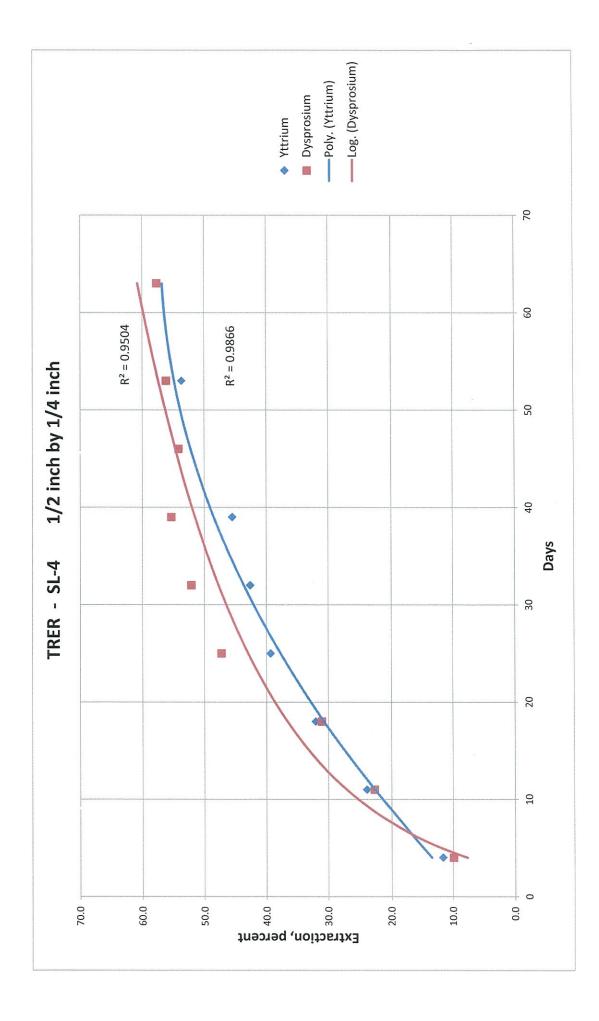
_	extr	%		50.3	45.6	11.3		14.0	0.7	39.5	42.3	37.2	43.1	37.8	45.4
Day 63	Solution	qdd		88800	12300	3760		6000	121	71200	11900	19000	198081	52290	145791
	extr S	%		48.3	42.5	10.5		13.6	0.7	34.4	38.1	33.1	40.6	36.1	42.6
Day 53	Solution	qdd		86400	11600	3560		5900	124	62400	10800	17000	189087	50690	138397
. 9	extr	%		44.6	39.6	9.7	•.	11.7	9.0	33.1	37.3	30.6	38.1	34.9	39.5
Day 46	Solution	qdd		81200	11000	3330		5140	113	61300	10800	16000	180712	49970	130742
39	extr 3	%		38.8	36.3	7.4		11.7	0.6	25.6	33.9	28.3	34.5	32.1	35.6
Day 39	Solution	qdd		71300	10200	2540		5220	106	47500	9920	15000	165458	46540	118918
2	extr	%		34.5	32.7	6.0		10.3	0.5	24.6	31.8	26.1	31.3	30.1	31.8
Day 32	Solution	· qdd ·		63800	9270	2090		4630	93.9	46200	9420	14000	151420	44080	107340
	extr	%		29.7	28.8	4.8		8.4	0.4	11.5	15.8	12.2	22.9	21.4	23.5
Day 25	Solution	dqq		55600	8280	1680		3830	75.3	21100	4570	6410	111232	31420	79812
8	extr	%		21.8	17.9	4.8		6.6	0.4	18.3	23.7	16.7	20.5	21.8	19.8
Day 18	Solution	qdd		41100	5150	1710		3050	75.3	35000	7120	9060	100677	32580	68097
11 ·	extr	%		15.2	12.9	3.8		3.7	0.3	11.5	16.8	11.0	14.6	16.7	13.7
Day 1:	Solution	qdd		29100	3780	1370		1730	50.6	22200	5120	6030	72898	25330	47568
4	extr	%		6.6	5,4	1.6		2.3	0.1	5.3	9.1	4.7	7.2	10.0	6.0
Day 4	Solution	qdd			1600							2620			20897
	Solids	grams	;	1995.5	1995.5	1995.5		1995.5	1995.5	1995.5	1995.5	1995.5	1995.5	1995.5	1995.5
Tails	Assay	bpm		95	15.9	31.9		40	19	117	17.6	34.5	284	94.5	190
	mqa	Calc		191	29.2	35.9	•	46.5	19.1	193	30.5	55.0	499	152	348
-	Head, ppm	Assay		210	28.0	35.3		40	19	182	29.1	51.4	499	140	359
		Element		>	5	∍		:5	Be	ų	PN	đ	TREE+Y	LREE	HREE+Y


1 inch by 1/2 inch

SL-3

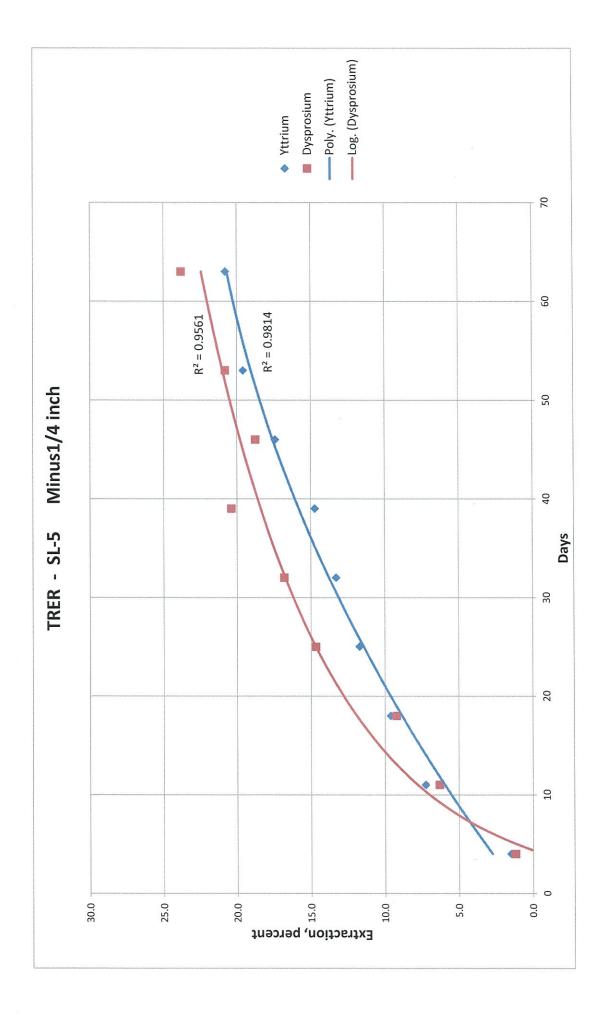
Day 63	Solution extr	ppb %		_	15100 57.3				1.1 192	-					
3	extr Sc	%		56.0	55.6	17.8		20.7	1.0	54.7	56.1	41.1	51.7	51.4	
Day 53	Solution	qdd		102000	14900	6040		10000	180	96500	13500	20400	231311	64530	10201
6	extr	%		53.8	52.7	16.7	•	18.3	0.9	48.3	54.9	38.7	49.7	50.4	10.4
Day 46	Solution	. qdd		00266	14300	5720		8920	165	85900	13400	19400	225267	64310	10001
39	extr	%		47.9	46.3	11.6		13.9	, 0. 6	42.7	58.8	40.2	47.7	50.5	100
Day 39	Solution	ppb		89400	12700	3970		6800	109	76600	14700	20600	219251	65610	113041
2	extr	%	-	45.3	44.0	10.8		11.5	0.6	40.4	52.7	37.8	45.4	47.5	000
Day 32	Solution	dqq		85600	12200	3720		5640	111	73400	13300	19600	211727	62440	10001
2	extr	%		40.1	41.5	0.6		11.5	0.7	34.9	49.2	33.0	40.3	43.8	0 00
Day 25	Solution	ppb		76600	11700	3120		5760	123	64200	12600	17300	190059	58350	002101
8	extr	%		32.9	29.8	9.6		7.9	0.6	26.7	37.9	24.7	31.9	35.5	1 00
Day 18	Solution	ppb		63700	8470	3400		3940	116	49500	9790	13100	152206	47850	101256
	extr	%		24.9	21.5	7.0		7.0	0.5	20:6	33.5	19.6	25.2	30.3	0
Day 1	Solution	dqq .		48800	. 6180	2530		3570	90.1	38800	8800	10500	121851	41480	1200
4	extr	%		12.1	9.9			3.5	0.3	8.9	19.6	8.9	12.7	17.1	
Day 4	Solution	qdd			2870				50.9				-	23680	2007
_	Solids	grams		•••	• •	1981.9		1981.9	1981.9			1981.9	1981.9	1981.9	1001
Tails	Assay	mqq			12.4			40	19	82.3	13	31	223	67.1	100
	Head, ppm	Calc			29.1				19.2						261
	Head,	Assay		210	28.0	35.3		40	19	182	29.1	51.4	499	140	200
		Element		۲	δ	5		÷	Be	ų	PZ	٩X	TREE+Y	LREE	עסכביע

. •


.

SL-4

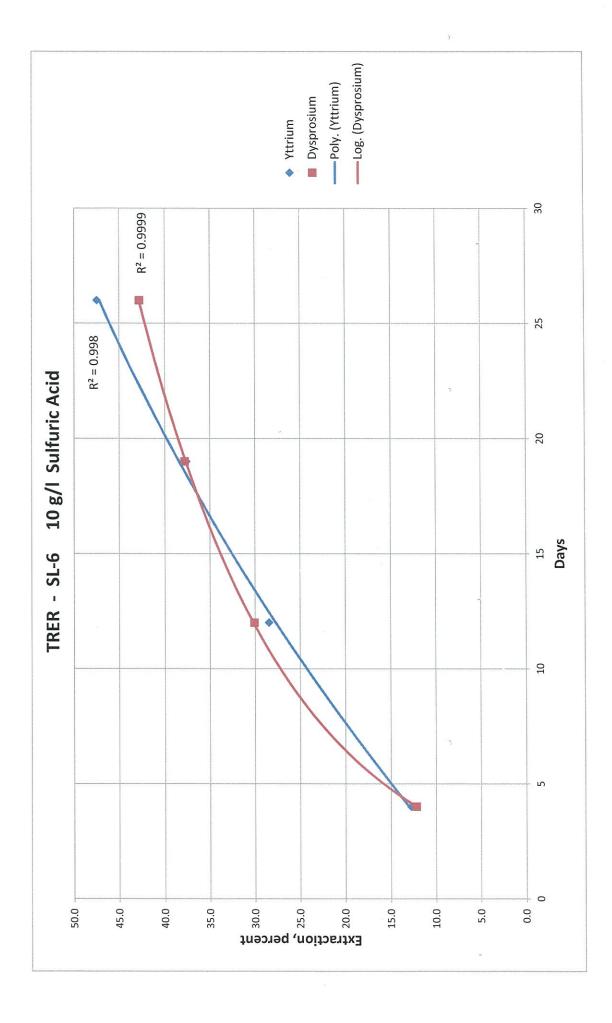
1/2 inch by 1/4 inch


	-			-	~	~		~	<u> </u>	10		<u> </u>	10		~
63	extr	%	-		57.7	••		29.3			58.4				
Day 63	Solution	dqq	00100	98300	14400	7110		15500	230	114000	14600	20000	225000	67500	157000
53	extr	%	ľ	2.2	56.2	21.2		22.4	1.1	63.2	56.5	41.2	52.1	53.8	51.5
Day 53	Solution	qdd	-		14300			11900			14400		222941	67040	155901
91	extr	%		54.L	54.2	21.3		20.0	1.1	58.5	54.2	39.4	50.9	51.2	50.8
Day 46	Solution	qdd	00110	nnsse	14000	7160		10700	200	105000	14000	19300	221360	64710	156650
39	extr	%	1	0.24	55.3	16.5		15.7	0.8	49.1	52.9	39.1	47.4	51.2	45.9
Day 39	Solution	dqq	00000	80800	14600	5530	-	8440	158	88700	13900	19500	209066	65940	143126
32	extr	%	:	47.0	52.1	17.8		12.2	0.7	46.7	52.2	36.7	45.5	51.1	43.3
Day 32	Solution	ppb	00101	luuca/	13900	6090		6570	140	85500	13900	18500	203138	66730	136408
5.	extr	%		5.95	47.3	12.7		10.0	0.6	43.6	52.3	34.5	42.7	48.8	40.2
Day 25	Solution	qdd		00/1/	12800	4380		5460	114	81000	14200	17700	193583	64900	128683
8	extr	%		32.1	31.1	13.6		8.9	0.7	32.7	36.0	26.0	33.9	40.6	31.1
Day 18	Solution	dqq		00685	8430	4740		4910	143	61200	9790	13400	154528	54320	100208
11	extr	%		23.9	22.7	7.2		6.7	0.6	19.4	31.7	17.7	25.7	33.2	22.7
Day 1	Solution	dqq			6250	2530		3750	120	36700	8800	9260	119284	45220	
4	extr	%				1.5		3.4	0.3	5.1	17.3	8.1	12.6	16.8	10.8
Day 4	Solution	dqq.	00000	22000	2770	548		1950	64.5	9720	4860	4300	58990	23130	35860
	Solids	grams	с - ГС 7	19/5.0	1975.0	1975.0			1975.0	1975.0	1975.0	1975.0	1975.0	1975.0	1975.0
Tails	Assay	ppm	ŭ	08	11.8	27.8		40	20	65.9	11.7	30.6	218	61.9	156
	mqq	Calc		189	27.9	35.6		56.6	20.3	191	28.1	52.9	470	138	331
	Head, ppm	Assay	2	210	28.0	35.3		40	19	182	29.1	51.4	499	140	359
		Element	;	~	ð	þ		ï	Be	ц	PN	۲b	TREE+Y	LREE	HREE+Y

SL-5

Minus 1/4 inch

		Tails		Day 4	4	Day 1	1	Day 18	8	Day 25	25	Day 32	12	Day 39	39	Day 46	1 6	Day 53.	53	Day 63	
Head, ppm	_	Assay	Solids	Solution	extr	Solution	extr	Solution	extr												
Calc	lc	ppm	grams	dqq	%	ppb	%	dqq	%	ppb	%	ddd	%	dqq	%	dqq	%	dqq	%	qdd	%
	198	157	1995.3	3000	1.5	14400	7.2	18800	9'6	22700	11.7	25400	13.3	27900	14.7	32700	17.4	36500	19.6	38000	20.8
	28.7	21.9	1995.3	349	1.2	1820	6.3	2620	9.2	4150	14.7	4690	16.8	5660	20.4	5080	18.8	5590	20.8	6320	23.8
	33.6	27.1	1995.3	91.2	0.3	1230	3.6	2320	7.0	2800	8.5	3450	10.6	3820	11.8	4630	14.4	5560	17.4	6050	19.3
	62.6	40	1995.3	1480	2.4	3570	5.7	5780	9.3	8440	13.7	10500	17.3	12600	20.8	15900	26.4	18100	30.3	21300	36.1
	19.4	19	1995.3	43.7	0.2	133	0.7	178	0.9	249	1.3	293	1.6	237	1.3	269	1.5	325	1.8	337	1.9
	181	102	1995.3	149	0.1	6830	3.7	16600	9.2	26800	15.0	30600	17.3	50600	28.5	52400	30.1	59200	34.3	74800	43.7
	26.4	15.8	1995.3	484	1.8	3130	11.8	4520	17.3	5900	22.8		25.6	10300	40.2	7630	30.9	8550	34.8	9740	40.1
	53.3	42.1	1995.3	581	1.1	2910	5.4	4510	8.6	6480	12.4		13.5	11100	21.4	8180	16.4	9080	18.3	10300	21.0
	500	363	1995.3	9057	1.8	46573	9.3	61178	12.4	79628	16.3	86969	18.0	111230	23.1	105179	22.3	118554	25.3	125904	27.4
	149	87.4	1995.3	4168	2.8	22890	15.3	28360	19.3	36530	25.1	39830	27.8	49940	34.9	47470	33.9	54320	39.0	56320	41.2
	360	285	1995.3	4889	1.4	23683	6.6	32818	9.2	43098	12.2	47139	13.6	61290	17.6	57709	17.0	64234	19.0	69584	20.9

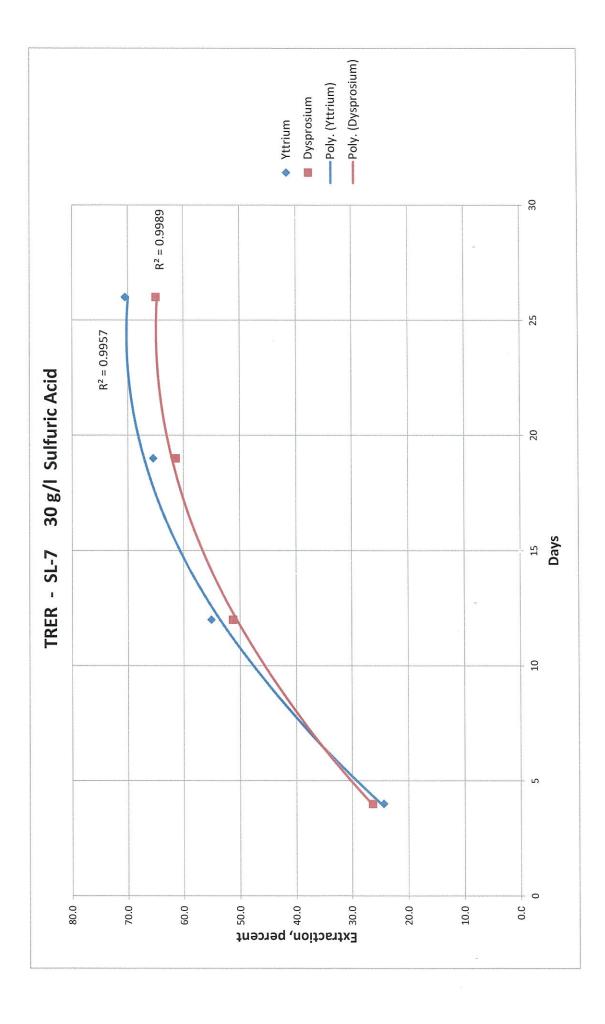

APPENDIX C RESULTS OF LEACHING TESTWORK

.

Appendix C Test No. SL-6									TRER Static Leach Tests May 17, 2013
		1/2 inch (Crush		Acid Stren	gth	10	g/I	
Purpose:	To ex	amine the rare	e earth elements from	n the Rou	und Top Dep	oosit			
Sample:	Appro	oximately 3 kg	of Red Rhyolite sam	ole crush	ed to nomin	al one half	inch		
Procedure:	of aci 26 da alique amou samp	dified solution ys), the slurry ot was remove int of concentr le of the pure	shed to a size of 80% (designated sulfuric was swirled to thoro d for a sample to be rated sulfuric acid wa solution was remove nd prepared for assa	acid stre ughly mix sent for a s added t d for assa	ngth) was a k the compo analysis. Th to restore th ay and resid	dded. At ea ments and a e free acid ne level to t ual free aci	ch designated s allowed to settl was determined he original leve d determination	ample i e for ab I and th I. At the n. The s	interval (4, 12, 19, out an hour. An ne appropriate e end of the test, a solids were then
General Conditions:									
	Crush P80 of 1/2 inc	h	Leach Time 26 days		Sulfuric Ac 10 g/l	id Concenti	ation 0.936 St	rength	Percent Solids 50%
Summary of Results:									
	Parameter Extraction, % Assayed Head Calculated He Final Tail Assa Sulfuric Acid (l, g/mt ad, g/mt γ, g/mt	<u>Ү</u> 47.4 210 205 108 13.1	<u>Dy</u> 42.8 28.0 29.4 16.8	U 13.3 35.3 33.7 29.2 kg/mt	<u>TREE+Y</u> 43.3 499 508 288	HREE+Y 47.5 359 397 209		· -
A. Leaching Conditions:									
Time <u>days</u>	Net Pulp Weight grams	Net Soln Volume <u>ml</u>	Acid Added <u>grams</u>		Residual Acid <u>g/l</u>		<u>Hq</u>		
0 1 4 12	6003 6000 5993 5991	3003 3000 2993 2991	10.4 27.5 12.5 8.7		1.24 6.25 7.50		1.10 1.37 1.01 0.77		
19 26 Total	5981 5987	2991 2981 2987	8.7 8.7 67.8		7.50 7.50 8.75		0.74 0.93		

B. Detailed Results:

			Tails			Day 4			Day 12			Day 19			Day 26	
	Head,	opm	Assay	Solids	Solu	tion	extr	Sol	ution	extr	Solut	ion	extr	Solut	ion	extr
Element	Assay	Calc	ppm	grams	ррь	grams	%	ppb	grams	%	ppb ·	grams	%	dqq	grams	%
1																
Y	210	205	108	2971.8	26000	2999.8	12.8	57600	2998.1	28.4	75900	2988.1	37.6	94900	2993.9	47.4
Dy	· 28.0	29.4	16.8	2971.8	3550	2999.8	12.2	8710	2998.1	30.1	10900	2988.1	37.8	12200	2993.9	42.8
U	35.3	33.7	29.2	2971.8	780	2999.8	2.3	2050	2998.1	6.2	3750	2988.1	11.3	4370	2993.9	13.3
A1	67946	72112	70702	2971.8	474000	2999.8	0.7	898000	2998.1	1.3	1130000	2988.1	1.6	1370000	2993.9	2.0
Fe	11200	10459	10360	2971.8	22200	2999.8	0.2	48600	2998.1	0.5	81200	2988.1	0.8	96600	2993.9	0.9
Li	40	46.8	40.0	2971.8	1920	2999.8	4.1	4070	2998.1	8.8	4810	2988.1	10.5	6660	2993.9	14.6
Be	19	20.2	20.0	2971.8	65.8	2999.8	0.3	120	2998.1	0.6	152	2988.1	0.8	165	2993.9	0.8
Th	182	172	86.9	2971.8	16800	2999.8	9.9	45000	2998.1	26.5	65000	2988.1	38.4	82900	2993.9	49.5
Nd	29.1	28.8	15.4	2971.8	5340	2999.8	18.7	9480	2998.1	33.4	11600	2988.1	41.1	13000	2993.9	46.5
Yb	51.4	58.3	38.5	2971.8	4650	2999.8	8.0	11200	2998.1	19.5	15600	2988.1	27.2	19300	2993.9	34.0
TREE+Y	499	508	288	2971.8	68983	2999.8	13.7	139822	2998.1	27.9	180222	2988.1	36.2	213965	2993.9	43.3
LREE	140	111	79.1	2971.8	12650	2999.8	11.5	22490	2998.1	20.6	27360	2988.1	25.2	30760	2993.9	28.6
HREE+Y	359	397	209	2971.8	56333	2999.8	14.3	117332	2998.1	30.0	152802	2988.1	39.2	183205	2993.9	47.5

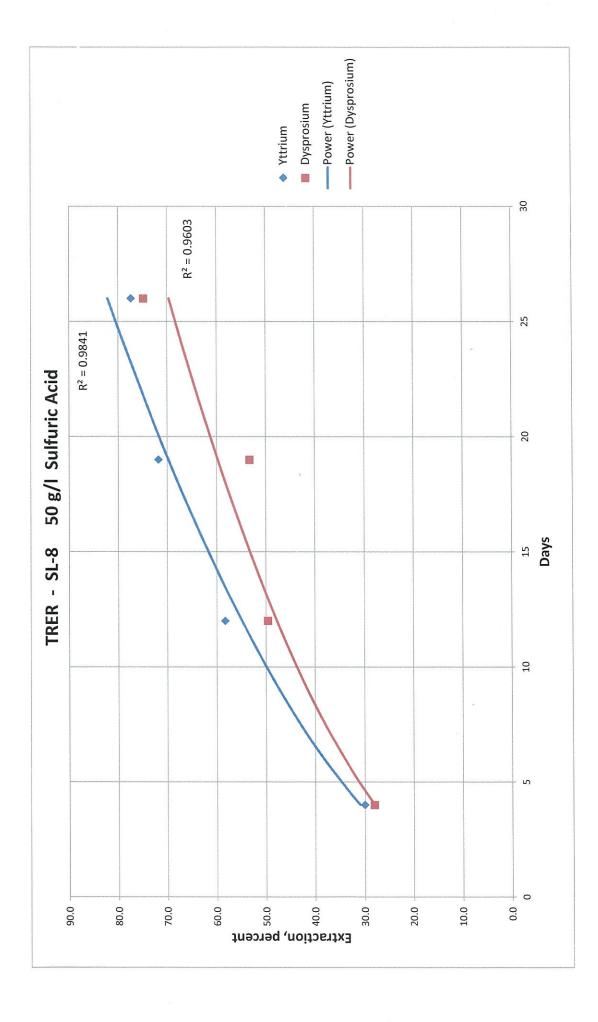


Appendix C Test No. SL-7									TRER Static Leach Tests May 17, 2013
		1/2 inch C	rush		Acid Strengtl	h	30	g/I	
Purpose:	To exa	mine the rare	earth elements from t	he Round	l Top Deposit				
Sample:	Аррго	ximately 3 kg o	f Red Rhyolite sample	crushed	to nominal or	e half inch			
Procedure:	of acic 26 day aliquo amour sample	lified solution (/s), the slurry w t was removed nt of concentra e of the pure so	hed to a size of 80% p designated sulfuric ac vas swirled to thoroug for a sample to be se ted sulfuric acid was ablution was removed i d prepared for assay.	id strengt hly mix th nt for ana idded to i for assay i	th) was added the component alysis. The fre restore the lev and residual fi	. At each des is and allowe e acid was de vel to the orig ree acid dete	signated sampl d to settle for etermined and ginal level. At t rmination. Th	e interval (about an he the approp he end of t e solids we	4, 12, 19, our. An priate the test, a
General Conditions:									
	Crush P80 of 1/2 inch	1	Leach Time 26 days		Sulfuric Acid 30 g/l	Concentratio	on 0.936 S	trength	Percent Solids 50%
Summary of Results:									
	Parameter		Y	Dy	<u>u</u>	<u>TREE+Y</u>	HREE+Y		
	Extraction, % (70.5	64. 9	21.2	62.2	68.4		
	Assayed Head,	-	210	28.0	35.3	499	359		
	Calculated Hea		210	27.4	34.0	516	405		
	Final Tail Assay		62	9.6	26.8	195	128		
	Sulfuric Acid Co	onsumption	19.4		kg/mt				
A. Leaching Conditions	:								
	Net Pulp	Net Soln	Acid		Residual				
Time	Weight	Volume	Added		Acid				
<u>davs</u>	grams	<u>mł</u>	grams		<u>g/I</u>		<u>рН</u>		
0	6006	3006	31.2				0.87		
1	6053	3053	74.8		6.3		0.98		
4	6046	3046	18.5		25.0		0.68		
11	6019	3019	14.8		26.3		0.43		
19	5978	2978	7.3		28.8		0.43		
26	5956	2956			28.8		0.64		
Total			146.6						

B. Detailed Results:

			Tails			Day 4			Day 12			Day 19			Day 26	
	Head,	ppm	Assay	Solids	Solut	ion	extr	Solut	tion	extr	Solut	ion	extr	Solut	ion	extr
Element	Assay	Calc	ppm	grams	ppb	grams	%	ppb	grams	%	ррЪ	grams	%	ppb	grams	%
																_
Y	210	210	62	2968.3	49900	3046.4	24.4	113000	3019.1	55.0	135000	2977.8	65.4	145000	2955.6	70.5
Dy	28.0	27.4	9.6	2968.3	7020	3046.4	26.3	13700	3019.1	51.2	16500	2977.8	61.4	17400	2955.6	64.9
U	35.3	34.0	26.8	2968.3	2970	3046.4	9.0	6360	3019.1	19.1	7250	2977.8	21.7	7040	2955.6	21.2
AI	67946	71223	69112	2968.3	795000	3046.4	1.1	1560000	3019.1	2.2	1860000	2977.8	2.7	2070000	2955.6	3.0
Fe	11200	10350	9800	2968.3	48900	3046.4	0.5	214000	3019.1	2.1	385000	2977.8	3.8	545000	2955.6	5.3
Li	40	72.9	40.0	2968.3	4150	3046.4	5.8	12100	3019.1	16.9	21800	2977.8	30.3	32600	2955.6	45.1
Be	19	20.5	20.0	2968.3	109	3046.4	0.5	234	3019.1	1.2	355	2977.8	1.8	445	2955.6	2.2
Th	182	178	45.3	2968.3	55900	3046.4	32.3	99400	3019.1	57.2	110000	2977.8	63.1	130000	2955.6	74.5
Nd	29.1	30.3	11.8	2968.3	9840	3046.4	33.3	14500	3019.1	49.0	18000	2977.8	60.5	18100	2955.6	61.1
Yb	51.4	58.9	27.4	2968.3	9900	3046.4	17.3	20500	3019.1	35.6	28300	2977.8	48.8	30900	2955.6	53.4
TREE+Y	499	516	195	2958.3	129991	3046.4	25.9	247228	3019.1	49.0	298072	2977.8	58.8	314136	2955.6	62.2
LREE	140	111	67.0	2968.3	23270	3046.4	21.6	34500	3019.1	31.9	41920	2977.8	38.6	42680	2955.6	39.4
HREE+Y	359	405	128	2968.3	106271	3046.4	26.9	212728	3019.1	53.7	256152	2977.8	64.3	271456	2955.6	68.4

.


Appendix C Test No. SL-8					TRER Static Leach Tests May 17, 2013
	1/2 inch Crush	Acid Strength	50	g/l	
Purpose:	To examine the rare earth elements from	n the Round Top Deposit			
Sample:	Approximately 3 kg of Red Rhyolite sam	ble crushed to nominal one half ir	nch		
Procedure:	The sample was crushed to a size of 80% of acidified solution (designated sulfuric 26 days), the slurry was swirled to thoro aliquot was removed for a sample to be amount of concentrated sulfuric acid wa sample of the pure solution was remove rinsed thoroughly and prepared for assa	acid strength) was added. At eacl ughly mix the components and all sent for analysis. The free add w s added to restore the level to th d for assay and residual free add	h designated sau lowed to settle vas determined a be original level. determination.	mple inter for about and the an At the end The solid	rval (4, 12, 19, an hour. An opropriate d of the test, a Is were then
General Conditions:					

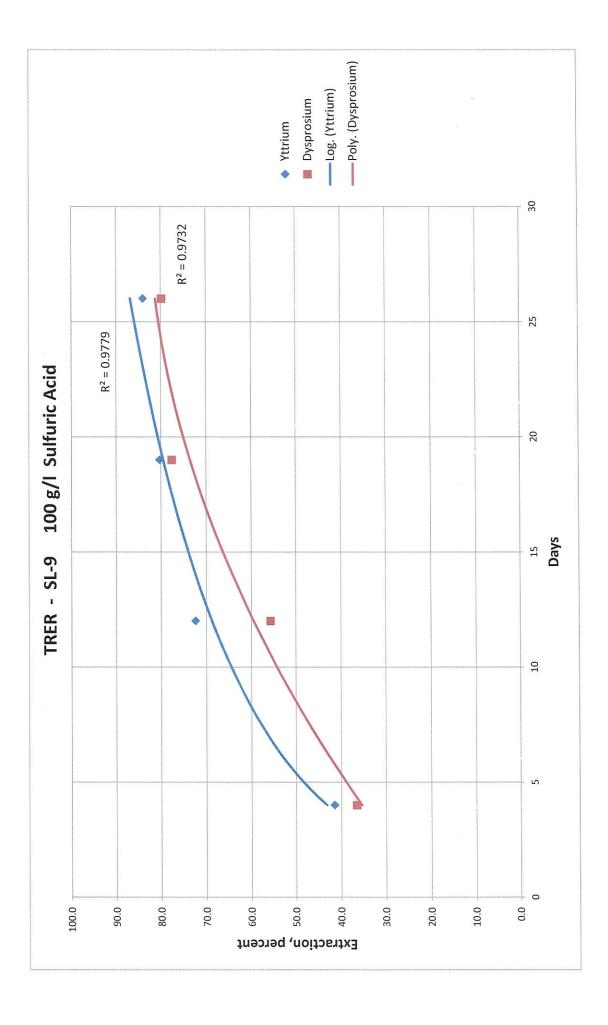
	Crush		Leach Time			Sulfuric Acid	Concentratio	n		Percent Solids
	P80 of 1/2 inch		26 days			50 g/l		0.936 Str	ength	50%
Summary of Results:										
	Parameter			Y	Dy	<u>u</u>	TREE+Y	HREE+Y		
	Extraction, % (1	1)		77.4	74.8	28.4	67.4	74.1		
	Assayed Head, g	g/mt		210	28.0	35.3	499	359		
	Calculated Head	d, g/mt		221	33.4	34.5	527	421		
	Final Tail Assay,	g/mt		50	8.4	24.7	172	109		
	Sulfuric Acid Co	nsumption		21.6		kg/mt				
A. Leaching Condition	s:									
	Net Pulp	Net Soln		Acid		Residual				
Time	Weight	Volume		Added		Acid				
days	grams	<u>mi</u>		grams		<u>g/l</u>		<u>Н</u> а		
O	6001	3001		51.9				0.76		
1	6098	3098		118.3		12.5		0.83		
4	6086	3086		20.8		45.0		0.61		
11	6064	3064		17.1		46.2		0.36		
19	6031	3031		9.6		48.7		0.31		
26	5985	2985				50.0		0.52		
Total				217.7						

8. Detailed Results:

	1		Tails			Day 4			Day 12			Day 19			Day 26	
	Head	l, ppm	Assay	Solids	Solu	tion	extr	Solut	ion	extr	Solut	ion	extr	Solut	tion	extr
Element	Assay	Calc	ppm	grams	ppb	grams	%	dqq	grams	%	ppb	grams	%	ppb	grams	%
Y	210	221	50	2961.4	63800	3086.4	30.0	124000	3063.8	58.3	153000	3030.6	71.7	166000	2984.7	77.4
Dγ	28.0	33.4	8.4	2961.4	8990	3086.4	28.1	15900	3063.8	49.6	17100	3030.6	53.3	24300	2984.7	74.8
U	35.3	34.5	24.7	2961.4	4170	3086.4	12.6	6560	3063.8	19.8	6990	3030.6	21.1	9520	2984.7	28.4
				i												
AI	67946	72213	69483	2961.4	986000	3086.4	1.4	1750000	3063.8	2.5	2270000	3030.6	3.3	2650000	2984.7	3.8
Fe	11200	10444	9450	2961.4	754000	3086.4	7.5	343000	3063.8	3.5	640000	3030.6	6.4	966000	2984.7	9.5
Li	40	102.4	40.0	2961.4	5920	3086.4	6.0	22700	3063.8	23.0	42400	3030.6	42.7	61100	2984.7	60.9
Be	19	19.6	19.0	2961.4	146	3086.4	0.8	351	3063.8	1.9	541	3030.6	2.8	624	2984.7	3.3
Th	182	172	37.4	2961.4	78900	3086.4	47.7	124000	3063.8	75.0	131000	3030.6	79.2	130000	2984.7	78.3
Nd	29.1	28.7	10.5	2961.4	12200	3086.4	44.3	16300	3063.8	59.3	17000	3030.6	61.8	17500	2984.7	63.4
Yb	51.4	56.2	24.7	2961.4	13900	3086.4	25.8	25200	3063.8	46.7	28400	3030.6	52.5	30500	2984.7	56.1
TREE+Y	499	527	172	2961.4	162100	3086.4	32.1	272427	3063.8	53.8	315012	3030.6	62.1	343888	2984.7	67.4
LREE	140	105	62.3	2961.4	28970	3086.4	28.6	39240	3063.8	38.7	40510	3030.6	40.0	41800	2984.7	41.1
HREE+Y	359	421	109	2961.4	133130	3086.4	32.9	233187	3063.8	57.6	274502	3030.6	67.7	302088	2984.7	74.1

.

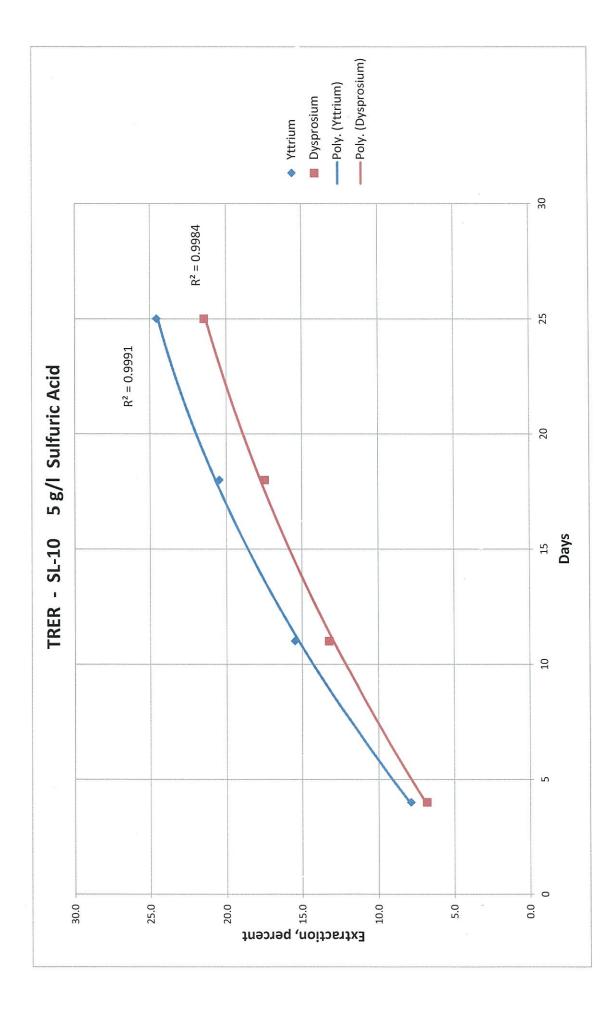
Appendix C Test No. SL-9					TRER Static Leach Tests May 17, 2013								
	1/2 inch Crush	Acid Strength	100	g/I									
Purpose:	To examine the rare earth elements from	the Round Top Deposit											
Sample:	Approximately 3 kg of Red Rhyolite sample crushed to nominal one half inch												
Procedure:	The sample was crushed to a size of 80% of acidified solution (designated sulfuric 26 days), the slurry was swirled to thorou aliquot was removed for a sample to be amount of concentrated sulfuric acid was sample of the pure solution was removed	acid strength) was added. At each Ighly mix the components and allo Sent for analysis. The free acid was added to restore the level to the	designated samp owed to settle for s determined an original level. At	ole interva r about an d the appi the end o	al (4, 12, 19, 1 hour. An ropriate 9f the test, a								


rinsed thoroughly and prepared for assay. Material balances were prepared for elements of interest.

Percent Solids

50%

General Conditions: Crush Leach Time Sulfuric Acid Concentration P80 of 1/2 inch 26 days 100 g/l 0.936 Strength Summary of Results: Parameter Y <u>Dy</u> <u>U</u> <u>TREE+Y</u> <u>HREE+Y</u> Extraction, % (1) 84.0 79.8 30.7 73.4 79.9 Assaved Head, g/mt 210 28.0 35.3 359 499 Calculated Head, g/mt 231 34.1 25.2 556 448 -Final Tail Assay, g/mt 24.7 37 6.9 148 90 Sulfuric Acid Consumption 29.6 kg/mt A. Leaching Conditions: Net Pulp Net Soln Acid Residual Time Weight Volume Added Acid <u>days</u> grams ml grams <u>в/1</u> <u>рН</u> 0 6003 3003 103.6 0.64 1 6209 3209 221.5 30.0 0.68 6199 4 3199 37.8 91.2 0.53 11 6184 3184 22.8 96.2 0.19 6148 19 3148 19.1 97.5 0.16 26 6115 3115 100.0 0.37 Total 404.8 B. Detailed Results:


			Tails		Day 4			Day 12			Day 19					
	Head,	ppm	Assay	Solids	Solution extr		extr	Solution		extr	Solution		extr	r Solution		extr
Element	Assay	Calc	ppm	grams	ррb	grams	%	ppb	grams	%	ppb	grams	%	ppb	grams	%
Y	210	231	37	2950.3	88400	3199.4	41.5	154000	3183.6	72.4	171000	3148.1	80.3	179000	3114.9	84.0
Dγ	28.0	34.1	6.9	2950.3	11500	3199.4	36.5	17500	3183.6	55.7	24500	3148.1	77.6	25200	3114.9	79.8
U	35.3	25.2	24.7	2950.3	5640	3199.4	17.2	7250	3183.6	22.1	9670	3148.1	29.4	10100	3114.9	30.7
AI	67946	25.2	69059	2950.3	1330000	3199.4	2.0	2370000	3183.6	3.5	2950000	3148.1	4.4	3520000	3114.9	5.2
Fe	11200	25.2	8610	2950.3	211000	3199.4	2.2	796000	3183.6	8.1	1320000	3148.1	13.4	1850000	3114.9	18.7
Li	40	154.2	30.0	2950.3	13900	3199.4	9.8	52800	3183.6	37.0	83000	3148.1	57.9	116000	3114.9	80.6
Be	19	19.1	18.0	2950.3	263	3199.4	1.5	686	3183.6	3.9	792	3148.1	4.5	1050	3114.9	5.9
Th	182	185	29.4	2950.3	96700	3199.4	56.6	131000	3183.6	76.9	97800	3148.1	57.8	144000	3114.9	84.1
Nd	29.1	31.2	9.9	2950.3	13600	3199.4	47.2	17000	3183.6	59.3	12900	3148.1	45.3	19700	3114.9	68.3
Yb	51.4	63.3	23.2	2950.3	18500	3199.4	31.7	30200	3183.6	51.8	24000	3148.1	41.3	37200	3114.9	63.4
TREE+Y	499	556	148	2950.3	207001	3199.4	40.4	320936	3183.6	62.7	332614	3148.1	65.0	376551	3114.9	73.4
LREE	140	108	58.2	2950.3	33160	3199.4	33.3	40810	3183.6	41.1	37990	3148.1	38.4	45900	3114.9	46.1
HREE+Y	359	448	90	2950.3	173841	3199.4	42.1	280126	3183.6	68.0	294624	3148.1	71.4	330651	3114.9	79.9

Appendix C Test No. SL-10									R Static Leach Tests y 17, 2013	
		1/2 inch Crusi	h		Acid Strengt	'n	5	g/I		
Purpose:	To e	kamine the rare ear	th elements from	the Rou	nd Top Depc	sit				
Sample:	Аррг	oximately 3 kg of R	ed Rhyolite samp	le crushe	ed to nomina	one half in	ch		r .	
Procedure:	of ac 25 da aliqu amo samp	sample was crushed idified solution (de: ays), the slurry was iot was removed foi unt of concentrated ole of the pure solut d thoroughly and p	signated sulfuric a swirled to thorou r a sample to be s I sulfuric acid was tion was removed	acid stren ighly mix ent for a added t for assa	ngth) was add the compon nalysis. The o restore the y and residu	ied. At each ents and all free acid wa level to the al free acid o	designated sar owed to settle as determined a original level. determination.	nple interva for about an and the app At the end o The solids v	l (4, 11, 18, hour. An ropriate of the test, a vere then	
General Conditions:										
	Crush		ich Time		Sulfuric Acid	Concentrat	ion	n Percent		
	P80 of 1/2 inc	h 25	dəys		5 g/i		0.936 St	rength	50%	
Summary of Results:										
	Parameter	(4)	Y	Dy	<u>U</u>	TREE+Y	HREE+Y			
	Extraction, %		24.6	21.4	4.8	24.8	27.3			
	Assayed Head	-	210 204	28.0	35.3	499	359			
	Calculated He Final Tail Assa		204 154	29.3	35.1 33.4	500	385			
	Sulfuric Acid C		154 9.2	23.0	33.4 kg/mt	376	280			
A. Leaching Condition	s:									
	Net Pulp	Net Soln	Acid		Residual					
Time	Weight	Volume	Added		Acid					
<u>days</u>	<u>grams</u>	<u>ml</u>	grams		<u>g/l</u>		<u>рН</u>			
0	6006	3006	15.6							
1	6001	3001	8.1		2.5		0.95			
4	5985	2985	8.1		2.5		1.27			
11	5973	2973	4.3		3.8		0.91			
19	5968	2968	4.4		3.8		0.93			
26	5980	2980			3.8		1.13			

B. Detailed Results:

			Tails		Day 4			Day 11			Day 18					
	Head,	ppm	Assay	Solids	Solution		extr									
Element	Assay	Calc	_ ppm	grams	ppb	grams	%									
Y	210	204	154	2974.7	16000	2984.9	7.9	31400	2972.9	15.5	41300	2968.3	20.5	49000	2979.7	24.6
Dy	28.0	29.3	23.0	2974.7	1990	2984.9	6.8	3850	2972.9	13.2	5050	2968.3	17.4	6140	2979.7	21.4
U	35.3	35.1	33.4	2974.7	386	2984.9	1.1	841	2972.9	2.4	1240	2968.3	3.6	1660	2979.7	4.8
			-													
Al	67946	72368	71391	2974.7	353000	2984.9	0.5	608000	2972.9	0.8	790000	2968.3	1.1	955000	2979.7	1.4
Fe	11200	10150	10080	2974.7	28700	2984.9	0.3	43800	2972.9	0.4	53500	2968.3	0.5	68600	2979.7	0.7
Li	40	45.0	40.0	2974.7	1150	2984.9	2.6	2480	2972.9	5.5	3650	2968.3	8.2	4950	2979.7	11.2
Be	19	19.1	19.0	2974.7	46.4	2984.9	0.2	74.9	2972.9	0.4	97.4	2968.3	0.5	109	2979.7	0.6
Th	182	174	144	2974.7	8190	2984.9	4.7	15800	2972.9	9.1	21000	2968.3	12.2	29100	2979.7	17.1
Nd	29.1	27.8	19.8	2974.7	3320	2984.9	12.0	5360	2972.9	19.4	6300	2968.3	23.0	7780	2979.7	28.7
Υb	51.4	54.8	45.5	2974.7	2790	2984.9	5.1	5580	2972.9	10.2	7060	2968.3	13.0	9060	2979.7	16.9
TREE+Y	499	500	376	2974.7	45568	2984.9	9.1	81299	2972.9	16.4	102112	2968.3	20.7	121065	2979.7	24.8
LREE	140	114	95.2	2974.7	7640	2984.9	6.7	12600	2972.9	11.1	15040	2968.3	13.4	18470	2979.7	16.6
HREE+Y	359	385	280	2974.7	37928	2984.9	9.9	68699	2972.9	17.9	87071	2968.3	22.9	102595	2979.7	27.3

